Effects of Slippers on Sit-to-Stand Transition in Older Women

Cathy Lo Wai Ting
Dr. Yick, K.L.
Dr. Ng, S.P.
Dr. Yip, J.
Presentation outline

1. Introduction
2. Methods
3. Results
4. Conclusions
5. References
6. Q&A
1. Introduction
Introduction

Common problems for many older people

Loss of sensation

Weakness of Somatosensory

Risk of falling

Improper footwear
Introduction

• **Slips and trips** can be prevented by **shoe features**, including midsole material hardness, height of the heel collar and outer sole slip resistance. *(Hornbrook et al., 1991)*

• **Risk of falls** in old people is increased inside home when walking **barefoot** or in **socks**. *(Koepsell et al., 2004; Menz et al., 2006)*

Introduction

• Slips and trips can be prevented by shoe features, including midsole material hardness, height of the heel collar and outer sole slip resistance. (Hornbrook et al., 1991)

• Risk of falls in older people is increased inside homes when walking barefoot or in socks. (Koepsell et al., 2004; Menz et al., 2006)

Biomechanical studies on indoor footwear are scarce.

Introduction

Sit-to-stand
(fundamental and frequent motion)

- Postural transition and coordination of muscle activity to achieve postural stability.
 (Millington, et al., 1992; Ganea. Et al., 2011)

- Important indicator of daily-life functional independence and mobility. *(Schenkman et al., 1991)*

Introduction

Sit-to-stand
(fundamental and frequent motion)

• Postural transition and coordination of muscle activity to achieve postural stability.
 (Millington, et al., 1992; Ganea, et al., 2011)

• Important indicator of daily-life functional independence and mobility.
 (Schenkman, et al., 1991)

Visual observation to assess sit-stand transition balance

Introduction

Objective:
To quantify the subject’s postural stability in sit-to-stand transition in response to barefoot and indoor slipper conditions.
2. Methods

2.1 Participants
2.2 Footwear
2.3 Experimental protocol
2.4 Measure outcomes
2.1 Participants

• 10 healthy older females
• 60-67 years old
• BMI: 20.4-28.6
• Foot size: EU 35-38
• Without using walking aid
• Healthy feet
2.2 Footwear

1. Barefoot

2. Slipper
 - Common indoor slipper style of local older woman
 - Open-toe design
 - A strap across the dorsal forefoot
2.3 Experimental protocol

1. Positioned in an **armless** standard chair
2. **Adjustable** seat height to position knee at 90° of flexion
3. Sat with their feet **shoulder width** apart
4. **Arms by the side** without touching their body

1. Stand up, at the command “stand”
2. **Stand still** for five seconds
3. **5 minutes** practice trial
4. **3 valid trials** of data
2.4 Measure outcomes

- Center of pressure (COP)
 By Novel Pedar®

1. COP excursion (mm)
 - Antero-posterior (AP) range
 - Medio-lateral (ML) range

2. COP sway length (mm) & mean COP velocity (mm/s)
3. Results and discussion

3.1 COP AP excursion
3.2 COP ML excursion
3.3 Sway length
3.4 Mean velocity
3.1 COP AP excursion

Left foot
- Participants: Barefoot, Slippers
- Anterior - Posterior direction (mm)
- Graph for participants 1 to 10

Right foot
- Participants: Barefoot, Slippers
- Anterior - Posterior direction (mm)
- Graph for participants 1 to 10
3.1 COP AP excursion

Left foot

- Slippers
- BMI

Left side with slipper
Higher BMI, greater AP displacement

$p<0.05$
3.2 COP ML excursion

Greater ML displacement with Slippers on right foot
3.3 Sway length

Left foot

<table>
<thead>
<tr>
<th>Participants</th>
<th>Barefoot</th>
<th>Slippers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Right foot

<table>
<thead>
<tr>
<th>Participants</th>
<th>Barefoot</th>
<th>Slippers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 Sway length

Left foot
- Higher BMI, longer sway length
- $p<0.05$

Right foot
- Larger foot size, longer sway length
- $p<0.05$

Left side with slipper

Right side with slipper
3.4 Mean velocity

Left foot

Mean velocity (mm/s)

Participants

- **Barefoot**
- **Slippers**

Right foot

Mean velocity (mm/s)

Participants

- **Barefoot**
- **Slippers**

Less stable in Slippers
3.5 Mean velocity

Left foot
- Left side with slipper
- Higher BMI, higher velocity

Right foot
- Right side with slipper
- Larger foot size, higher velocity

p < 0.05
4. Conclusion
4. Conclusion and suggestion

• Slippers VS BF: No significant difference found in AP and ML direction, sway path and sway velocity.
• Left foot with slipper positively correlated with BMI in AP, sway length and velocity.
• Right foot with slipper positively correlated with foot size, sway length and velocity.
• Slippers without fixation on hindfoot may not able to improve postural stability during sit-stand movement.
• Indoor slippers interventions/ design associated with improved postural stability in older adults should be developed and investigated.
Acknowledgment

• Departmental Grant of Institute of Textiles and Clothing, The Hong Kong Polytechnic University (PolyU G-UA1X).
References

END

Thank you for your kind attention
TA muscle activation

<table>
<thead>
<tr>
<th>Ready to stand</th>
<th>Standing still</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>