A REVIEW OF INNOVATIVE TYPES OF BRACES FOR ADOLESCENT IDIOPATHIC SCOLIOSIS (AIS)

Wing-Yu Chana, Joanne Yipa*, Kit-Lun Yicka, Sun-Pui Ngb

aInstitute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

bHong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

*Corresponding author: Dr. Joanne Yip
Email: tcjyip@polyu.edu.hk
Tel: 2766 4848
CONTENTS

- Introduction
- Method
- Results
- Development of innovative types of braces
- Conclusion
INTRODUCTION

What is scoliosis?

- Three-dimensional deformity of the spine and trunk
- 80% of scoliosis cases are idiopathic scoliosis - the cause is unknown
- Adolescent idiopathic scoliosis (AIS) is the most common type of scoliosis - the age of onset is between 10 and 16 years old

A diagnosis of scoliosis is confirmed when the Cobb angle is 10 degrees or greater, which is measured through a standard radiographic examination.

Treatment of scoliosis

- Depends on type of curve, age and severity of spinal curvature
 - Surgery: > 40-50 degrees
 - Brace: Usually between 20 and 30 degrees
 - Observation: < 20 degrees
- Bracing is the most commonly used non-invasive treatment

Introduction

- Bracing is the application of external corrective forces onto the spine and trunk
- It can be rigid or flexible

Example of rigid brace:
Milwaukee brace
Picture from: http://www.scoliosisjournal.com/content/2/1/19/figure/F2

Example of flexible brace:
SpineCor®
Picture from: http://www.spinecor.org/scoliosis-treatment.htm

Problems of conventional rigid braces

- They are made of rigid components such as metals and rigid plastics causing:
 - Heavy, non-breathable and uncomfortable
 - Difficult to move
 - Difficult to wear and take off
 - Bulky and awkward appearances
 - Lower self-esteem, more fatigue and lower compliance

INTRODUCTION

Some existing flexible braces are designed to overcome the limitations of rigid braces

They are made of textiles combined with plastics or metals

SpineCor brace
Picture from: http://www.spinecor.com/ForProfessionals/SpineCorDynamicCorrectiveBrace.aspx

TriaC brace
INTRODUCTION

<table>
<thead>
<tr>
<th>Advantages of existing flexible braces:</th>
<th>Disadvantages of existing flexible braces:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light, breathable and comfortable</td>
<td>Pressure sores</td>
</tr>
<tr>
<td>Greater mobility of the body</td>
<td>Difficulties when going to the toilet</td>
</tr>
<tr>
<td>Thin and more natural appearance</td>
<td>High pain score</td>
</tr>
<tr>
<td>More acceptable for teenagers and higher compliance</td>
<td></td>
</tr>
</tbody>
</table>

Objective:
Review of the design features and materials used for the fabrication of innovative types of braces

appearance

→ More acceptable for teenagers and higher compliance

METHOD

- Search engines: PubMed, BioMed Central, ResearchGate and SAGE
- Search strings:
 - “innovative brace” + “scoliosis”
 - “smart brace” + “scoliosis”
 - “comfort brace” + “scoliosis”
- Publication date: between 1st January 2005 and 4th December 2015
- Language: English
RESULTS

<table>
<thead>
<tr>
<th>Search strings</th>
<th>No. of related articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>“innovative brace” + “scoliosis”</td>
<td>4 (3 rigid braces and 1 flexible brace)</td>
</tr>
<tr>
<td>“smart brace” + “scoliosis”</td>
<td>2 (1 rigid brace and 1 flexible brace)</td>
</tr>
<tr>
<td>“comfort brace” + “scoliosis”</td>
<td>6 (4 rigid brace and 2 flexible brace)</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

- 5 of them involve the improvement of the comfort and compliance of treatment for AIS
- 3 are rigid braces and 2 are flexible braces
- ScoliOlogiC® Chêneau light™ brace, Gensingen brace™, CMCR brace, Spinealite™ and tailor-made posture correction girdle
ScoliOlogiC® Chêneau light™ brace

Purpose: improve the quality of life of AIS patients
→ lighter, finer and easier to wear

➢ Components: four polyethylene shells, two uprights and straps with attachments
➢ Paddings → increase the wear comfort and increase the area that induces pressure

Advantages:
→ Light brace since fewer materials are used
→ Open spaces are designed for corrective movement
→ Pressure sores caused by compression effects are avoided

The purpose and principle are similar to ScoliOlogiC® Chêneau light™ brace

Differences between them:
→ Gensingen brace™ is based on the precise arrangement of pressure zones and associated open spaces
→ Gensingen brace™ is formed by a single polyethylene shell and the straps with attachments
→ ScoliOlogiC® Chêneau light™ brace is created by using many different parts

Picture from: ‘Brace technology’ thematic series-the Gensingen brace™ in the treatment of scoliosis, p.5.

CMCR brace (monoshell carbon brace respecting breathing)

- inspired by wear comfort, lightness in weight, aesthetics and respiratory capacity
- based on the corrective principle of the Lyon brace which consists of brace pads located on humps
- made of polyethylene and carbon with adjustable and mobile supports

Advantages:

→ The mobility provides permanent pressure and more opportunities to orient forces
→ The correction is achieved without blocking chest movement → preserves respiratory capacity
→ An anterior opening allows patients to easily put the brace on

Spinealite™

- **Purpose:** solve the existing problems of soft braces in the market → easier to adjust and use
- mainly consists of elastic ribbon materials
- 3D system consists of pelvic girdle correction, shifting of the shoulder and pelvic girdles against one another, spiral shoulder girdle correction and correction of the sagittal profile

Advantages:
→ Simple construction, **easier to wear and adjust**
→ Materials are **durable** → do not lose the tension force after long time wear
→ Corrective forces applied with limited freedom of movement → maximize the corrective effects

Tailor-made posture correction girdle

- **Purpose:** reduce imbalance of the waist and pelvis with a more natural look and better wear comfort
- mainly made of warp-knitted fabrics (tricot, satinettes and powernet)
- resin bones and EVA foam paddings → supportive and point pressure forces
- elastic shoulder straps and waistband → additional corrective forces

Advantages
- **Natural appearance** (similar to underwear with a vest-like design)
- Breathable and comfortable
- Easy to adjust and wear

Comparison of the innovative types of rigid braces

<table>
<thead>
<tr>
<th></th>
<th>ScoliOlogiC® Chêneau light™ brace</th>
<th>Gensingen brace™</th>
<th>CMCR brace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention period</td>
<td>- Late 2000s</td>
<td>- Late 2000s</td>
<td>- Late 2000s</td>
</tr>
<tr>
<td>Primary materials used</td>
<td>- Four polyethylene shells, two uprights and straps with attachments</td>
<td>- Single polyethylene shell, straps with attachments</td>
<td>- Polyethylene base with carbon blade</td>
</tr>
<tr>
<td>Advantages</td>
<td>- Easier to adjust for all possible curve patterns and trunk sizes of patients</td>
<td>- Easier to adjust for all possible curve patterns and trunk sizes of patients</td>
<td>- Able to provide permanent pressure and orient forces</td>
</tr>
<tr>
<td></td>
<td>- Quicker to produce</td>
<td>- Quicker to produce</td>
<td>- Able to preserve respiratory capacity</td>
</tr>
<tr>
<td></td>
<td>- Lighter, finer and easier to wear</td>
<td>- More comfortable to wear</td>
<td>- Easier to wear</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>- 38° (at the beginning of treatment) reduced to 19° (after 24 months of consistently wearing the brace)</td>
<td>- 43° (at the beginning of treatment) reduced to 23° (after 6 months of consistently wearing the brace)</td>
<td>- 24.1° (at the beginning of treatment) reduced to 20.2° (at the definitive brace removal)</td>
</tr>
</tbody>
</table>
Comparison of the innovative types of flexible braces

<table>
<thead>
<tr>
<th></th>
<th>Spinealite™</th>
<th>Tailor-made posture correction girdle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invention period</td>
<td>- 2010s</td>
<td>- 2010s</td>
</tr>
<tr>
<td>Corrective mechanism</td>
<td>- 3D system of postural corrections</td>
<td>- 3-point pressure system</td>
</tr>
<tr>
<td>Primary materials used</td>
<td>- Elastic ribbon materials</td>
<td>- Warp-knitted fabrics, resin bones and EVA foams</td>
</tr>
<tr>
<td>Advantages</td>
<td>- Easier to wear and adjust</td>
<td>- Easier to wear and adjust</td>
</tr>
<tr>
<td></td>
<td>- More durable</td>
<td>- More natural appearance</td>
</tr>
<tr>
<td></td>
<td>- More natural appearance</td>
<td>- More breathable and comfortable</td>
</tr>
</tbody>
</table>
| Effectiveness | - 27° (at the beginning of treatment) reduced to - 19° (at the beginning of treatment) reduced to 14° (after 6 months of daytime treatment)
A number of innovative bracing designs have been proposed to increase wear comfort and provide good corrective effects.

- Rigid braces: use materials that are lighter in weight, or reduce the amount of material used → reduce body movement restrictions and weight of the brace.

- Flexible braces: use elastic materials, foams or textiles such as warp knitted fabrics that allows greater body movement, and the more natural appearance can be more acceptable by adolescents.

- Physiological and psychological comforts of patients are important in improving compliance and the corrective effects of bracing treatment.
REFERENCES

REFERENCES

THE END
THANK YOU
Q&A